如何准确判断已给定的土体是常水头试验测试土体渗透系数
关于土的渗透系数是没一个定值,它与土的颗粒组成、孔隙度、密实度,更重要的是与土体的结构、裂隙的发育程度均有关系。一般情况采用现场原位抽水试验测求的渗透系数比较客观,室内渗透试验结果往往与抽水试验结果偏小很多。粘土的渗透系数很小基本上为不透水,一般小于0.1m/d.而粉土的渗透系数2~5m/d属正常,黄土(以粉粒为主的)则更大渗透系数可达15~20m/d。岩土工程参数确定非常复杂,一定要具体情况具体分析,绝非确定一个数那么简单。
地质的土层裂隙粘泥是粘土么,渗透系数多少啊?(这个裂隙粘泥是出现在水文地质图中的)
裂隙粘泥就是裂隙粘土,在第四系更新统的老地层内,常有裂隙比较发育的粘土层,即裂隙粘土,又称“有缝粘土”。这种粘土具有一般粘土没有的特殊结构,它含较多的粘粒,矿物成分常以伊利石为主,蒙脱石次之。土的亲水性强,干湿效应明显,干燥时收缩开裂变硬,吸水时膨胀软化,使土体结构破坏以至崩解。在裂土中开挖路堑,常发生坍塌和滑坡。裂隙粘土一般属膨胀土的范畴。裂隙粘土的渗透系数与裂隙产状和发育程度有明显关系。竖向裂隙发育的粘土,其垂直方向的透水性明显增大,裂隙发育短小的土,其不同方向的透水性差异较小。一般是要小于10cm/S的。
水文地质特征
水文地质特征对注浆材料的选择和注浆压力的确定尤其重要,因此,注浆施工前,必须要搞清楚所注地层是不含水层、弱含水层、富水层,还是高压动水地层?水量是多少,水压力是多大?地层渗透系数是多少?
现场水文地质特征通过超前地质探孔进行分析。超前地质探孔按图1-22布置。探孔共布置4个,分别位于左、右边墙和左、右拱腰。探孔纵向探测长度30m,终孔为开挖轮廓线外1.5 m,即外插角2.9°。每探测30m后,当确认前方可以开挖时,开挖施工25 m,余留5 m作为下一循环探测的余留岩墙。
图1-22 超前探孔横断面布置图
在现场探孔施工中,当有一个探孔出现流水时,其他探孔应减慢钻进,首先钻进出水孔,并不断测试出水孔的涌水量,直到出水孔钻到设计深度。按这一钻探原则进行探孔施工,期间,应对每一个探孔涌水量进行监测。在探孔施工结束后,如果没有一个孔是满孔流水,那么基本上可不再进行补探施工。否则,可通过分析各探水孔的水力联系进行补探设计和补探施工。
1.4.2.1 水流方向判定
通过分析各探水孔遇水时的钻孔深度,确定前方岩层的走向。综合各探水孔涌水量变化情况,分析探水孔之间的水力关系,确定水的来源方向。当需要进行补探时,主要在水源方向一侧进行补探设计和补探施工,以进一步确定水流方向和涌水量大小。
1.4.2.2 涌水量测试及稳定性分析
正确地分析出前方涌水量大小是确定是否可以进行开挖的最主要依据之一。涌水量的分析预测主要通过“预估→涌水量稳定性分析→补探确定”这一程序进行。
在超前探水孔钻探完成后,若探孔不是满孔流水,则可以直接通过采用容器提水的 *** 进行涌水量测试。这种情况下,涌水量Q单≤40m3/h,测试的误差不大。若满孔流水,即涌水量Q单>40m3/h时,采用容器提水的 *** 很难较准确地测试,这主要是在很短的时间内所选择的容器就被涌水充满,测试时引起的时间误差太大,造成测试数据不准确。
当涌水量Q单>40m3/h 时,可采用射程计算法进行涌水量预估。如图1-23,将ϕ108mm孔口管变径转换为ϕ32mm的焊接水管,通过测试当涌水射出高程为1 m处的水平射程,从而估算出前方涌水量。计算 *** 如下:
地下工程注浆技术
地下工程注浆技术
地下工程注浆技术
地下工程注浆技术
式中:X为水平射程(m);Y为高程(m),取1 m;g为重力加速度(cm/s2,取9.8);t为流水时间(s);Q单为单孔涌水量(m3/h);V为涌水速度(m/s);S为过水断面面积(m2);D为管径(m),取ϕ32mm,即0.032 m。
计算得:
地下工程注浆技术
图1-23 涌水量测试方案示意图
测试各探孔涌水量和总涌水量(总涌水量可通过矩形堰法或流速法测试),绘制涌水量变化曲线,以此分析前方涌水量的稳定性。若涌水量稳定,每个探水孔涌水量Q单<40m3/h,且总涌水量Q总<300m3/h时,基本上可以确定前方发生突涌水的可能性不大,可以进行开挖施工,否则应进行前方涌水量的准确判析。
1.4.2.3 涌水量的准确判析
通过在水源侧增补探孔的方式来准确评估前方发生突涌水的可能性。施工中一般按预设计的超前预注浆方案施作水源侧的注浆钻孔,通过钻孔数量的增加,以使总涌水量进行分配。若能达到实施几个钻孔后不再有满孔流水现象,这时,继续观测各孔流水量和总涌水量,分析其关系和规律性,通过对总涌水量进行稳定性分析,从而界定出前方发生突涌水的可能性。
1.4.2.4 确定裂隙发育的分布特征
裂隙发育的分布特征也是影响注浆方案制定的主要因素之一。对裂隙发育的分布特征可采用止浆塞卡位技术,通过水量观测法进行确定。如图1-24 ,将水力膨胀式止浆塞下入钻孔中,按1m、2m…29m的位置对止浆塞进行卡位,通过注水,使止浆塞膨胀。通过测试芯管中的出水量,以确定测试段是否有水,以及水量大小。绘制水量随钻孔深度的分布特征曲线,由分布特征曲线判定水量的主要水源位置,从而确定钻孔范围内的裂隙发育分布特征。
图1-24 裂隙发育分布特征测试 *** 示意图
1.4.2.5 水压力测试
水压力是指相对隧道标高而言,隧道所承受的水头压力。隧道水压力的测试采用关水试验。为确保水压力测试数据的可靠性,若掌子面前方岩盘厚度不足5m、裂隙发育时,应采用C20混凝土封闭掌子面,封闭厚度1.5~2 m。测试过程中,若出现局部部位有流水、涌水时,应停止监测,重新对涌水点进行增设钢架、补喷混凝土等措施,以达到密闭状态,之后,重新进行监测。水压力稳定时间不得低于48 h,即当压力在某值稳定时间超过48 h以上,可认为这个压力值为最终水压力值(原始水压力),该水压力为隧道所承受的更大水压力。
水压力测试 *** 有渗压计法和压力表法两种。
渗压计法是在钻孔中放置渗压计,通过测试渗压计频率,计算出水压力值。由于国内外没有水压力测试经验,无法评价水压力测试过程的危险性,因而,在圆梁山隧道高水压力测试过程中,水压力监测采用了渗压计法。渗压计法测试装配图如图1-25。
图1-25 渗压计法测试装配图
图1-26 压力表法测试装配图
压力表法是最简单,也是最直接的监测 *** 。通过圆梁山隧道水压力监测,表明在高水压力下,水不可能冲毁止浆墙和孔口管,因而,直接测试水压力是安全可靠的,因此,在以后其他隧道水压力监测时,采用了压力表法。压力表法测试装配图如图1-26。
1.4.2.6 渗透系数测试
(1)地表测试
地表帷幕注浆时,测试地层渗透系数常采用注水试验,采用下式计算。
地下工程注浆技术
式中:k为地层渗透系数(m/d);Q为稳定流量(m3/d);l为试验段长(m);s为水位差(指水头压力高度,m);r为钻孔半径(m)。
注水试验测试 *** 及原理图如图1-27。注水试验步骤:
图1-27 注水试验测试 *** 及原理图
1)采用地质钻机垂直于地面钻孔,不测试部位采用套管护壁,测试部位下入外包滤网的PVC管(周边钻孔)。
2)测定地层中的初始水位。
3)在地面采用稳定的流量向孔内进行注水。
4)通过调节水流量的大小使管内形成稳定水位并测试。
5)测试水位稳定时的注水流量。
6)通过公式计算地层渗透系数。
对于城市基坑工程,常采用供水管道进行注水试验。试验过程中,通过调整水头大小,以保证给水与渗透水的水力平衡,从而确定稳定流量与水头差。
(2)洞内测试
洞内帷幕注浆时,常采取注水试验(为减少注入地层中水量,也可采用水灰比为1∶1的水泥浆进行注浆试验测试,测试结果偏小)。测试注水(浆)压力和注水(浆)流量,采用以下公式计算
地下工程注浆技术
地下工程注浆技术
式中:ω为地层单位吸水量(L/(min·m·m));L为注水(浆)段长度(m);γ为注水(浆)孔半径(m);
为注水(浆)时稳定流量(L/min);
为注水(浆)压力(水头压力高度,m)。
压水试验法
压水试验法是国内外长期用来测量和评价岩层渗透性的有效 *** 。因为在各种野外原地水力试验 *** 中(压水试验、注水试验和抽水试验)压水试验 *** 有其独特的优越性:操作简单、迅速,地下水位以上和以下均可使用,在同一钻孔中进行分段压水还可以测得岩层渗透性柱状剖面图,对矿床水文地质分层尤其对双层水位矿床具有不可替代的作用。尽管压水试验 *** 还有某些缺点,比如未考虑溶隙的方向和各向异性特点等,在双层水位矿床水文地质工作中,大多数情况下是可以满足矿山防治水需要的,这种 *** 仍不失为一种实际可行的好 *** 。
图6-1 a.双管压水器具;b.单管压水器具
(一)单孔单栓塞压水试验法
目前,国内外经常采用的是双管单栓塞压水试验器具(图6-1a)。这种压水试验器具的更大缺点:当钻孔较深时,双层管操作比较麻烦。故作者又将其改为单管单栓塞压水试验器具(图6-1b)。单管单栓塞压水试验器具的工作原理同双管单栓塞压水试验器具相同,只不过单管器具将加压的螺杆移到孔内栓塞的上部,而双管器具是在钻孔孔口。这样做的好处是操作简单,免去了双管的麻烦(深孔尤为突出)。试验时,孔内栓塞靠人力或机械旋转施加压力,使橡胶栓塞膨胀压紧孔壁,在栓塞与孔底之间形成一个封闭的压水区域。压水试验时,水从进水管进入压水段,水的压力则从孔口的压力表读取,在不考虑各向异性时,渗透系数可按下式计算:
双层水位矿床地下水深层局部疏干 *** 的理论与实践
式中:h为压水段的水头值(m);Q为压水量(m3/d);L为压水段长度(m);K为渗透系数(m/d);r为压水段半径(m)。
应该指出,单孔压水试验测得的渗透系数为压水段的平均渗透系数,更不是各向异性岩层的渗透系数。对双层水位矿床的研究,大多数情况下,只要搞清了溶隙含水层的平均渗透性,基本可以满足矿山生产的需要。因此,在矿床水文地质勘探初期,采取单孔压水试验 *** ,在矿床范围内根据勘探阶段的不同,选取一定比例的地质钻孔进行单孔分层压水试验,并据此作出钻孔渗透性柱状及剖面图,在充分考虑其他地质资料和物探资料的条件下,一般情况下便能够判断出矿床是否具有双层水位流,矿床是否是双层水位矿床。突变型双层水位矿床可以,渐变型双层水位矿床也可以。
如何根据单孔分层压水试验资料来判断矿床是否存在双层水位呢?其 *** 如下。
首先作出钻孔渗透性状柱剖面图,再在渗透性剖面图中,选择具有如下渗透特征的孔段:
(1)具有“V模式”渗透性特征的孔段,即渗透性具有“大—小—中”三元结构的孔段;
(2)具有“L模式”渗透性特征的孔段,即渗透性具有“大变小—突然膨大”的二元结构的孔段;
(3)整个钻孔的渗透性具有自上而下逐渐减少的特征。
不管上述哪种特征的孔段,只要能够具备下述条件之一,则可判断矿床能够形成双层水位流。
①具有1、2两项特征的钻孔可以在剖面中相互联系起来,既可以把同一个剖面中有一种模式的孔段联系起来,也可以在同一剖面中把两种以上的模式联系起来;②渗透性被联系起来的剖面,至少有一组空间上与矿体存在着密切的相互关系(比如剖面距离矿体比较近,在矿床开采的影响范围以内);③渗透性具有逐渐减少特征的钻孔深度应足够大。
具有上述条件的矿床应该是双层水位矿床。
(二)其他压水试验法
单孔单栓塞压水试验法所得的结果,尽管比较粗糙,但因其 *** 操作简单、方便既可在地下水位以上进行,也可以在地下水位以下进行,而且还可以在同一钻孔中方便地进行分段多次压水,能够获得地层渗透性柱状图或剖面图,对于双层水位矿床的水文地质评价在大多数条件下可以满足矿山需要。当然,对于一些技术要求比较高的工程项目,单孔单栓塞压水试验的结果有时满足不了工程计算精度的要求,比如水工渗流计算等。因此,下面简单介绍几种更科学、更准确、更能够充分考虑岩体各向异性的试验 *** 。
1.校正系数法
1978年罗克哈等人提出了校正系数法,1989年田开铭和万力教授对罗克哈等提出的校正系数法进行了改进,并提出了一套具体的计算 *** ,还编制了程序,应用十分方便。
校正系数法是以裂隙测量法的计算结果为基础,利用单栓塞压水试验数据就可以求得比较粗略的各向同性渗透张量。较单纯的单孔单栓塞压水试验 *** 前进了一大步。这种 *** 的优点是简单易行。但它必须有裂隙测量的计算结果作前提,否则,无法计算。这种 *** 提供结果的准确性,在很大程度上取决于压水试验结果的精度。因此,它们也是一个粗略的 *** 。但相对我国具体的勘探水平而言,校正系数法仍不愧为一个有效的 *** ,特别是对于利用水文地质部门几十年来所积累的大量压水试验资料,把这些资料由各向同性转换成工程需要的各向异性渗透资料,具有很大的实际意义和实用价值(具体 *** 见《各向异性裂隙介质渗透性的研究与评价》一书)。
2.三段压水试验
三段压水试验的 *** ,是1972年由路易斯提出。基本思路是用压水试验分别确定单组裂隙的渗透系数,再根据每组裂隙的产状把渗透系数叠加,就可以求得岩体的总渗透张量。这种 *** 的关键在于其独特的压水试验器具——三段压水试验器(图6-2)。
图6-2 三段压水试验与器具
三段压水法,要求压水孔平行于裂隙组的交线方向,因此,选孔前必须要求对试验点周围的岩体进行裂隙测量,以确定裂隙组的产状,并求出裂隙组的交线方向。如果只有两组裂隙,则压水孔只要求平行于其中一组,与另一组可以相交。观测孔不能离压水孔太远,观测孔段只能在径向流场中,所以这种钻孔的位置通常只能靠在一起,试验场地范围受到限制,不宜太大。
由于三段压水试验要求压水孔与裂隙组的交线平行,尤其要求仅能与一组相交,所以当裂隙组超过三组时,就很难满足这种条件。三段压水试验与其他 *** 相比,技术设备太复杂且造价高。只适宜于做一些标准试验,很难在大规模的生产工程中推广应用。在双层水位矿床水文地质勘探中应用就更困难了。
3.交叉孔压水试验法
1985年谢赫(Hsieh P.A)提出了交叉孔压水试验 *** 。这种 *** 不要求预先了解裂隙发育情况,钻孔布置 *** 可以任意布置,不受限制。该 *** 的更大特点是技术 *** 简单,只要利用上述广泛采用的单栓塞压水试验器就可以。该 *** 的更大缺点是计算复杂。虽然谢赫(Hsieh P.A)给出了多种条件下的理论公式,但在计算渗透张量的过程中,他只给出了非稳定流条件下的求解 *** (假定压水段和观测段都是一个点),1989年万力教授又给出了交叉压水求解稳定流公式计算渗透张量的 *** ,并编制成程序,排除了谢赫(Hsieh P.A) *** 中手工图解法的麻烦和不确定性,这种 *** 是一种大有前途的 *** 。
4.抽水试验法
传统水文地质抽水试验的 *** ,无论是稳定流还是非稳定流理论,只能解决各向同性的水文地质参数,对于各向异性含水层基本无能为力。据抽水试验获得的资料只能在一些特殊条件下才能反求参数,用来预测矿坑涌水量。
1966年由帕拉普斯(Papadopulos I.S.)首先提出在各向异性含水层中的井流公式,并提出了一阶渗透张量的计算 *** 。同年,汗吐斯(Hantugh M.S.)利用坐标变换法把一系列各向同性的非稳定井流公式转换为各向异性条件下的井流公式。维依(Ways)又提出了三维各向异性渗透系数的确定 *** 。纽曼(Neuman S.P.)提出了三孔两次抽水确定平面渗透张量的 *** 。1989年田开铭与万力教授又根据汗吐什的各向异性越流承压含水层不完整井非稳定流公式,用单纯形法和数值积分反求出三维各向异性渗透张量,并编有通用程序。
理论上虽然已经提出了许多各向异性渗透井流计算公式,但能够实际应用的却很少, *** 还很不成熟,基本处于理论研究阶段。实际上,裂隙含水层中渗透性的非均质性和各向异性,两者在实际工程中对水位的影响很难分别开来,要想分别求得两者的影响,理论上需要进行不同钻孔的多次水力试验,才有可能得出比较合理的各向异性渗透系数,既麻烦又费钱,实际意义不大。压水试验,尤其是单栓塞压水试验造价低,操作简单,使用方便,易于大面积采用,地下水位以下和以上都可以使用,还可以在同一钻孔中进行多段次重复试验,相对于抽水试验更为经济、合理、方便、实用。
5.渗透性各向异性岩层双层水位深度的计算 ***
如果我们在一个存在巨厚含水层矿床中,可以初步判断为渐变型双层水位矿床,而且可以通过一定手段(如:野外裂隙测量、压水试验或抽水试验)获得各向异性渗透主值的变化规律,那么,便可以通过下述 *** 初步确定出渐变型双层水位的产生深度。
例如,万力教授等对金岭铁矿铁山的3个剖面通过裂隙测量,根据大裂隙系统与小裂隙系统的相似性原理,最终提供的岩石渗透张量各向渗透主值的回归计算结果如表6-2,据此,可以求出产生双层水位的埋深和标高。
根据岩层水平渗透主值与垂直渗透主值随埋深增加而会逐渐交于某一深度Sα的规律,可以初步确定出双层水位形成的深度。
前面第三章第四节中已经说明,Sα点是各向异性溶隙含水层产生双层水位的位置。因此,可以采取下述 *** 求取Sα点的深度:
首先假定Kn=Kh,并据此计算出各条剖面中若干Sα点的位置,再据下述4种 *** 之一确定出矿床产生双层水位的深度:
①以Sα值更大值代表矿床产生双层水位的深度;②以所有Sα值的算术平均值代表矿床产生双层水位的深度;③选择Sα值平均值更大的剖面代表矿床产生双层水位的深度;④在联结所有Sα点的曲面上,工程实际位置与曲面相互重叠的更低位置即代表产生双层水位的深度。铁山矿床的计算结果见表6-2和表6-3。
表6-2 岩石渗透张量各渗透主值回归计算结果表
注:据田开铭,各向异位裂隙介质渗透性的研究与评价。
表6-3 各向异性渗透性岩层中双层水位深度计算表
基岩裂隙水的渗透系数怎么求
岩石的渗透系数主要取决于岩体的裂隙及风化破碎程度,岩石块本身的渗透系数很小,常在现场用压水试验来确定其等效于多孔介质的k值。
0条大神的评论